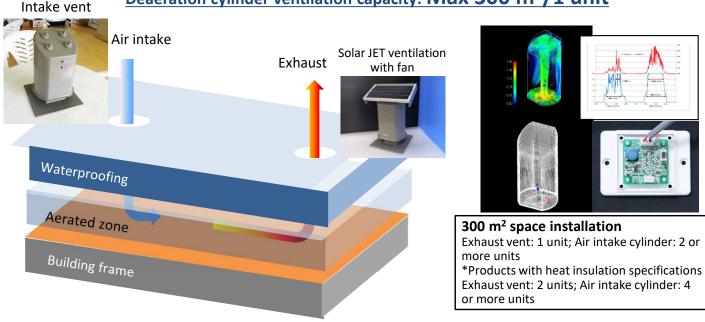

MLIT New Technology Information System (NETIS) Registered Product (Registration No. TH-120012-A)

Waterproofing that breathes

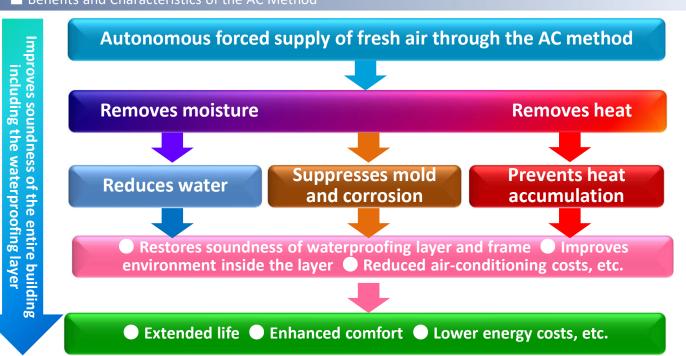
Rooftop Waterproofing Air Control

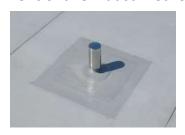
New waterproofing method helps extend the life of buildings and promotes conservation by removing moisture and heat from inside a roof's waterproofing layer


Fundamental Air Control (AC) Method

An Utsunomiya University/Oyama College/AIREC jointly developed product

To overcome the drawbacks of conventional methods focused on waterproofing properties, this collaborative project produced waterproofing that breathes, effectively discharging water accumulating inside the waterproofing layer by including a ventilation mechanism within the waterproofing layer. We have successfully created Air Control roof waterproofing that achieves excellent ventilation combinable with existing waterproofing methods.


Mechanism/Installation Standard


*When waterproofing layer is installed over insulation material, waterproofing layer may become hotter in summer compared to conventional methods, reaching around 80 • C (Architectural Institute of Japan; Membrane Waterproofing Work, p. 125).

■ Benefits and Characteristics of the AC Method

Data

■ Conventional exhaust method

Natural ventilation exhaust vent (stainless steel)

■ Air Control (AC) method

Solar JET ventilation with fan

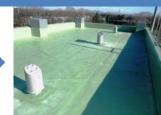
Humidity Lowest winter Humidity temperature

(*Measured in Utsunomiya, Tochigi)

Waterproofing layer surface	60 to 70°C		-10 to -15°C	
Inside waterproofing layer	59 to 68°C		-10 to -15°C	
Difference between layer surface and inside	1 to 2°C		0°C	
Skeleton surface	58°C		-10 to -15°C	
Exhaust from	Unmeasurable	Unmeasurable	Unmeasurable	Unmeasurable

AC method	Max summer temperature	Humidity	Lowest winter temperature	Humidity
Waterproofing layer surface	65°C		-8 to -13°C	
Inside waterproofing layer	40°C or lower		-2 to -7°C	
Difference between layer surface and inside	20°C or higher		6°C or higher	
Skeleton surface	40°C or lower		-2°C	
Exhaust from exhaust vent	40°C or lower	300 g to 800 g/day	-2°C	100 g to 300 g/day

^{*}For humidity, exhaust changes by site.


Max summer

temperature

Construction

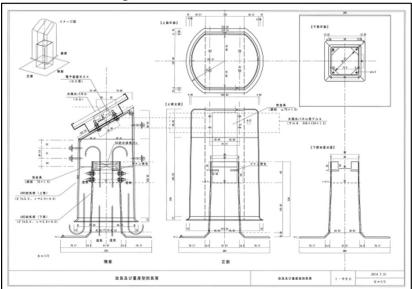
Conventional deaeration

exhaust vent

FRP sheet method

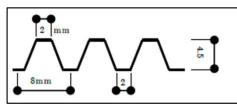
■ AC Method Equipment/Material Dimensions/Specifications

■ Solar JET ventilation


Name	Specifications	Size
Solar panel	Max. 17 V 6 W 0.35 A Newly designed electronic control circuit	335 mm × 188 × 16
Waterproof DC fan	12 V 1.2 W 0.1 A Max. air volume 0.65 m ³ /min Expected life 40,000 h	80 mm × 80 × 25
Exhaust vent Intake vent	Made with AES (t = 2.0 to 4.0 mm)	See product drawing

^{*}AES plastic: Acrylonitrile Ethylene-propylene-diene Styrene

■ Intake vent



[Product Drawing]

■ CORE CONE air-permeable material

Name	Specifications	Size
CORE CONE air- permeable material	Polypropylene	H 4.5 mm × W 1,250 × 30 m
Surface pressure resistance	100 kg/10 cm ²	

Distributor